Acta Crystallographica Section E

## Structure Reports Online

ISSN 1600-5368

## Nong Wang

School of Chemical and Biological Engineering Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail:
wangnong05@163.com

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
$R$ factor $=0.046$
$w R$ factor $=0.125$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis[4-bromo-2-(pyridin-2-ylmethyliminomethyl)phenolato]manganese(III) nitrate

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$, consists of a mononuclear manganese(III) complex cation and a nitrate anion. In the cation, the $\mathrm{Mn}^{\mathrm{III}}$ atom is coordinated by four N atoms and two O atoms from two tridentate Schiff base ligands, forming an octahedral complex.

## Comment

Manganese is a metal with a number of oxidation states (IIIV) under normal conditions, which results in its presence in naturally occurring processes and in magnetic materials. Examples include the photosynthetic water-oxidizing complex (WOC) of green plants (Zouni et al., 2001; Wieghardt, 1989; Bruckner et al., 1993; Vincent \& Christou, 1989) and cyanobacteria containing an $\mathrm{Mn}_{4}$ unit (Law et al., 1998; Yocum \& Pecoraro, 1999). Single-molecule magnets are derived from $\mathrm{Mn}_{12}$ complexes, with slow-relaxation magnetization and quantum tunnelling of magnetization (Sessoli et al., 1993; Thomas et al., 1996). In order to mimic the behaviour of these manganese clusters, a number of manganese complexes have been synthesized, among which some crystal structures revealed the existence of significant electrostatic interaction between the Mn atom and the ligand (Nie et al., 2001; Hu et al., 2002; Liu \& Xu, 2003). We report here a new manganese(III) complex, (I) (Fig. 1).

(I)

In the cation of (I), the $\mathrm{Mn}^{\text {III }}$ atom displays an octahedral geometry and is coordinated by two Schiff base ligands. Each Schiff base acts as a tridentate ligand and ligates to the Mn atom through one phenolate O atom, one imine N atom, and one pyridine N atom. The three trans angles at Mn are all close to $180^{\circ}$ (Table 1). The other angles are close to $90^{\circ}$, ranging from 83.05 (14) to $98.51(14)^{\circ}$, which indicates a slightly distorted octahedral geometry of the Mn atom. The six bond lengths around the Mn atom are similar, ranging from 1.883 (3) to 1.958 (3) $\AA$. The average $\mathrm{Mn}-\mathrm{O}$ bond length [1.892 (3) $\AA$ ] and $\mathrm{Mn}-\mathrm{N}_{\text {imine }}$ bond length [1.892 (3) $\AA$ ] are comparable to other values observed in Schiff base manganese(III) complexes (Zhang et al., 1999, 2000). The N1$\mathrm{Mn} 1-\mathrm{N} 2$ and $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 4$ bond angles deviate from $90^{\circ}$ by

Received 3 June 2005
Accepted 6 June 2005
Online 10 June 2005


Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. Only the major component of the disordered nitrate anion is shown.


Figure 2
The crystal packing of (I) viewed along the $b$ axis. H atoms have been omitted. Only the major components of the disordered nitrate anions are shown.
6.59 (14) and $6.95(14)^{\circ}$, respectively, because of the strain created, respectively, by the $\mathrm{Mn} 1 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{N} 2$ and $\mathrm{Mn} 1 / \mathrm{N} 3 /$ C21/C22/N4 five-membered chelate rings. In the crystal structure, there are no obviously short contacts (Fig. 2).

## Experimental

5-Bromosalicylaldehyde ( $0.1 \mathrm{mmol}, 20.1 \mathrm{mg}$ ) and 2-aminomethylpyridine ( $0.1 \mathrm{mmol}, 10.8 \mathrm{mg}$ ) were dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$. The mixture was stirred for 1 h to give a yellow solution, which was added to a stirred aqueous solution ( 5 ml ) of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}$, 28.7 mg ). The mixture was stirred at room temperature for 30 min , then filtered. The filtrate was kept in air for 12 d , forming brown block-shaped crystals.

## Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Mn}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}} \\
& M_{r}=697.23 \\
& \text { Tetragonal, } P 4_{2} / n \\
& a=17.608(3) \AA \\
& c=17.224(3) \AA \\
& V=5340.2(16) \AA^{3} \\
& Z=8 \\
& D_{x}=1.734 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.466, T_{\max }=0.548$
60512 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.125$
$S=1.02$
6135 reflections
380 parameters
H -atom parameters constrained

> 6135 independent reflections 3995 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.067$
> $\theta_{\max }=27.5^{\circ}$
> $h=-22 \rightarrow 22$
> $k=-22 \rightarrow 22$
> $l=-22 \rightarrow 22$

$$
\begin{gathered}
\begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0504 P)^{2}\right. \\
\quad+7.176 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.90 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.66 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{Mn} 1-\mathrm{O} 1$ | $1.883(3)$ | $\mathrm{Mn} 1-\mathrm{O} 2$ | $1.901(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Mn} 1-\mathrm{N} 1$ | $1.892(3)$ | $\mathrm{Mn} 1-\mathrm{N} 2$ | $1.954(3)$ |
| $\mathrm{Mn} 1-\mathrm{N} 3$ | $1.893(3)$ | $\mathrm{Mn} 1-\mathrm{N} 4$ | $1.958(3)$ |
|  |  |  |  |
|  |  |  | $98.51(14)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$ | $92.39(13)$ | $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 2$ | $88.75(13)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$ | $85.68(13)$ | $\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 2$ | $90.54(13)$ |
| $\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$ | $177.65(14)$ | $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$ | $95.65(14)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$ | $91.62(13)$ | $\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 4$ | $83.05(14)$ |
| $\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 2$ | $87.88(13)$ | $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 4$ | $175.78(13)$ |
| $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{O} 2$ | $93.50(13)$ | $\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 4$ | $89.37(14)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$ | $175.77(13)$ | $\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 4$ |  |
| $\mathrm{~N} 1-\mathrm{Mn} 1-\mathrm{N} 2$ | $83.41(14)$ |  |  |

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The O atoms of the nitrate anion are disordered over two distinct sites, with occupancies of 0.512 (8) and $0.488(8)$. The $\mathrm{N}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in both disordered components were restrained to be equal.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We are grateful to Lanzhou Jiaotong University, People's Republic of China, for funding this study.

## References

Bruckner, S., Menabue, L. \& Saladini, M. (1993). Inorg. Chim. Acta, 24, 185191.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Hu, M.-L., Xu, D.-J. \& Cheng, D.-P. (2002). J. Coord. Chem. 55, 11-16.
Law, N. A., Caudle, M. T. \& Pecoraro, V. L. (1998). Advances in Inorganic Chemistry, edited by A. G. Sykes, Vol. 46, p. 305. London: Academic Press. Liu, Y. \& Xu, D.-J. (2003). J. Coord. Chem. 56, 59-64.
Nie, J.-J., Liu, L.-J., Luo, Y. \& Xu, D.-J. (2001). J. Coord. Chem. 53, 365-371.
Sessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. \& Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

## metal-organic papers

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R. \& Barbara, B. (1996). Nature (London), 383, 145-147.

Vincent, J. B. \& Christou, G. (1989). Adv. Inorg. Chem. 28, 197-201.
Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.

Yocum, C. F. \& Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182-187. Zhang, C., Mei, Y. \& Yan, D. (2000). J. Chem. Crystallogr. 30, 39-42.
Zhang, C.-G., Wu, D., Zhao, C.-X., Sun, J. \& Kong, X.-F. (1999). Transition Met. Chem. 24, 718-721.
Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Saenger, W., Orth, P. (2001). Nature (London), 409, 739-743.

